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Fig. 3 Comparison of computed and experimental ice shapes in glaze
ice conditions (I' = —8°C).
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Fig. 4 Comparison of computed and experimental ice shapes in glaze
ice conditions (T = —6.6°C).

on the energy balance. The continuity and energy equations
are given by

my, + 1

m = ’/iz‘/‘d + ”anl + ms(\ (2)

E,+ H, + H, — H, — H, =0, — 0. (3)

Enthalpy and internal energy are calculated in relation to
a given reference state and depend on the type of surface
involved, whereas the heat transfer coefficient is computed
from two relations, one for the laminar region and one for
turbulent region.” The roughness model used is based on em-
pirical relation as given by Ref. 4.

ou n

Results and Discussion

THERMICE has been tested in rime and glaze ice condi-
tions and compared with experimental data and numerical
results. Figures 1 and 2 show comparison between results
calculated with THERMICE and those given by Shin et al.*
in rime ice conditions. The calculated ice shape compares well
with experimental data, particularly for the impingement lim-
its on the upper and lower surface of the airfoil. Figure 3
shows comparison with a series of experiments conducted by
Olsen et al.” in glaze ice conditions. We can observe that the
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horn is well-predicted, but the lower impingement limit, and
consequently the accumulated mass of ice, is overestimated.
Finally, Fig. 4 shows the resulting ice shape compared with
experimental and numerical results at a temperature of —6.6°C.
The results obtained with THERMICE compare well with the
numerical data, but the experimental ice shape is not well-
reproduced. This is the weakness of icing codes to predict
glaze ice shape since there is limited understanding of the
physical phenomenon of rough surfaces. Thus, it will be help-
ful if some experimental data could be obtained for heat trans-
fer and roughness characterization.

Conclusions

An icing code including thermodynamic effects has been
developed. It predicts well ice accretion in rime ice conditions.
However, for glaze ice the results do not agree well with
experimental data. For a realistic ice accretion it is important
to include the microphysical aspect of ice, model accurately
the convective heat transfer, and improve the correlations of
equivalent sand-grain roughness.
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Applicability of Newtonian and Linear
Theory to Slender Hypersonic Bodies
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Introduction

OR many years, fluid dynamicists have looked for simple
expressions to characterize aerodynamic properties for
specific flow regimes. This has resulted in such expressions
as the Prandtl-Glauert rule for subsonic lift coefficient ap-
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proximations, and Prandtl’s lifting-line theory for finite wings
in an incompressible fluid. Similarly, Newton’s *‘sine-squared”
law can be used to approximate the flow about bodies trav-
eling at hypersonic velocities. The question exists as to what
extent these approximations become valid or whether better
approximations exist. The goal of this research has been to
assess the accuracy of Newtonian theory for application to
slender hypersonic bodies and to investigate whether linear
theory can be used to provide accurate approximations for
similar cases (we recognize that linear theory is theoretically
not valid for hypersonic flow, but the intent is to define con-
ditions, if any, that give reasonable engineering results). The
approach has been to calculate the pressure distribution over
a biconvex two-dimensional model by using Newtonian and
linearized theory, and to compare them with an exact com-
putation fluid dynamics (CFD) solution of the two-dimen-
sional Euler equations for steady, inviscid, irrotational flow.

Techniques

MacCormack’s downstream marching CFD technique was
used to obtain the exact pressure distribution over a biconvex
airfoil by numerically solving the governing equations of the
flow at a distinct set of points. MacCormack’s technique is a
downstream marching, finite difference method based on a
predictor and a corrector step that gives second-order accu-
racy.' Because of the weak shocks associated with slender
biconvex shapes, MacCormack’s technique is an acceptable
method for solving the flow equations for the cases investi-
gated, and theoretically approaches the exact solution as the
grid spacing approaches zero. This convergence is conditional
upon the stability of the calculation that can be insured by
maintaining the downstream grid spacing within the Courant-
Friedrichs-Lewy stability criterion. The computational grid
lies between the leading-edge oblique shock, and the body
and the boundary conditions are found by using the oblique
shock relations at the shock and Prandtl-Meyer expansion/
compression at the body. Software was written in C and run
on a personal computer to implement MacCormack’s CFD
technique, and to numerically integrate the coefficient of pres-
sure over the entire surface of the body. These calculations
produced the coefficient of lift, coefficient of drag, and lift-
to-drag ratio for each of the three computational methods
(exact CFD, linear approximation, and Newtonian approxi-
mation). Validation of the CFD code was performed by cal-
culating the flow over a wedge at various angles of attack,
thickness to chord ratios #/c, and Mach numbers, and by com-
paring the CFD results with theoretical results. Results from

ENGINEERING NOTES 447

these tests verify that the CFD algorithm is capable of pro-
ducing an accurate representation of the pressure distribution.

It is generally assumed that linear theory is only valid up to
Mach 5 (the beginning of the hypersonic flow regime), but few
quantitative results have been found to confirm this.? Therefore,
it still is an academic problem to determine quantitatively over
what Mach number ranges linear theory is valid for slender
bodies. Although this research has focused on slender bodies
(He < 0.5), it is acknowledged that linear (and Newtonian)
theory may be valid for different Mach ranges for thicker bodies.
In summary, linearized flow is a closed form solution to a linear
approximation of the nonlinear governing Euler equations.’ The
linearization of the governing equations is based upon the as-
sumption that perturbation velocities to the freestream velocity
are negligible and, therefore, can be ignored to represent the
governing equations as a solvable linear partial differential equa-
tion. This equation leads to an expression for the coefficient of
pressure at a point in the flow [Eq. (1)] and can be numerically
integrated over the surface of the body to give approximations
for C,. C,. and L/D:

C, = 20/VM? — 1 (1)

Similar to linear theory, Newton’s “sine-squared’ theory
has been found to be a fair approximation for only a certain
set of conditions. Specifically, Newtonian theory has generally
been accepted to be a fair approximation for hypersonic bod-
ies with strong leading-edge shocks such as blunt bodies and
thick airfoils*S (oblique shock theory predicts that Newton’s
approximation becomes more accurate as the density behind
the shock becomes larger. i.e., the shock becomes stronger).
However, there is some reason to believe that Newtonian
theory is not valid for weaker shocks associated with slender
bodies but, once again, little research has been found to sup-
port this. This is the reason for examining the validity of
Newtonian theory for slender hypersonic bodies. In summary,
Newtonian theory states that the normal momentum of flow
impacting a surface is transferred to the body while the tan-
gential component is conserved.® This leads to the result that
the coefficient of pressure on the surface of the body is ex-
clusively a function of the angle between the tangent of the
body and the freestream velocity [Eq. (2)]:

C, = (p — p)pvi =2sin@ (2)

Results

Computations of three parameters (coefficient of lift, coef-
ficient of drag, and lift-to-drag ratio) are tabulated for both

Table 1 Coefficient of lift and related errors from exact CFD solution, linear theory, and Newtonian
theory for various Mach numbers and angle of attacks

C, tle = 0.05
Percentage Percentage
CFD Linear difference Newton difference

M =5, deg

a =0 0.00000 0.00000 — 0.00000 ——

a = 0.9 0.01331 0.01278 3.98 0.00313 76.46

a=1.8 0.02670 0.02557 4.23 0.00642 75.97

a =27 0.04022 0.03836 4.62 0.00999 75.16
M = 7.5, deg

a =1 0.00000 0.00000 — 0.00000

a =109 0.00921 0.00843 8.49 0.00313 65.97

a =18 0.01851 0.01686 8.91 0.00642 65.34

a = 2.7 0.02799 0.02528 9.68 0.00999 64.30
M = 10, deg

a =0 0.00000 0.00000 e 0.00000 —

a =09 0.00731 0.00629 13.95 0.00313 57.16

a = 1.8 0.01475 0.01239 14.64 0.00642 56.51

a =27 0.02241 0.01888 15.75 0.00999 55.41
M = 12.5, deg

a = 0.00000 0.00000 e 0.00000 —_

a = 0.9 0.00628 0.00503 20.00 0.00313 50.14
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Table 2 Coefficient of drag and related errors from exact CFD solution, linear theory, and
Newtonian theory for various Mach numbers and angle of attacks

C, e = 0.05

Percentage Percentage
CFD Linear difference Newton difference

M =5, deg

a =10 0.00278 0.00272 2.16 0.00050 82.14

a =109 0.00300 0.00292 2.54 0.00057 80.98

a =18 0.00365 0.00352 3.45 0.00079 78.28

a =27 0.00474 0.00452 4.54 0.00118 75.20
M = 7.5, deg

a=10 0.00188 0.00179 4.73 0.00050 73.60

a = 0.9 0.00204 0.00192 5.45 0.00057 72.00

a = 1.8 0.00250 0.00232 7.31 0.00079 68.35

a =27 0.00329 0.00298 9.45 0.00118 64.30
M = 10, deg

a =10 0.00146 0.00134 8.03 0.00050 65.92

a =109 0.00158 0.00144 9.11 0.00057 63.97

a = 1.8 0.00197 0.00173 11.89 0.00079 59.74

a =27 0.00262 0.00223 15.17 0.00118 55.22
M = 12.5, deg

a=10 0.00121 0.00107 11.58 0.00050 58.92

a =09 0.00132 0.00115 13.23 0.00057 56.94

Table 3 Lift-to-drag ratio and related errors from exact CFD solution, linear theory, and Newtonian
theory for various Mach numbers and angle of attacks

LID tle = 0.05
Percentage Percentage
CFD Linear difference Newton difference

M =5, deg

a =0 0.00000 0.00000 _ 0.00000 _

a =09 4.44259 4.37671 1.48 5.49939 -23.79

a = 1.8 7.32109 7.26214 0.81 8.09668 —-10.59

a = 2.7 8.48881 8.48110 0.09 8.50383 —-0.18
M = 7.5, deg

o =0 0.00000 0.00000 e 0.00000 e

a =09 4.52432 4.37890 3.21 5.49939 —21.55

a = 1.8 7.39513 7.26724 1.73 8.09668 —0.49

a =27 8.50501 8.48322 0.26 8.50383 0.01
M = 10, deg

a =0 0.00000 0.00000 —_— 0.00000 _

a =09 4.62619 4.37996 5.32 5.49939 —18.88

a = 1.8 7.49492 7.26067 3.13 8.09668 —-8.03

a =27 8.54040 8.48158 0.69 8.50383 0.43
M = 12.5, deg

a=10 0.00000 0.00000 —_— 0.00000 —_—

a =109 4.74981 4.37892 7.81 5.49939 -15.78

approximation methods and exact CFD results as a function
of Mach number and angle of attack (see Tables 1-3). In-
cluded are the percentage differences ot the approximations
from the exact values. All these cases were for a thickness-
to-chord ratio of 5% (t#/c = 0.05). It should be noted that the
thickness-to-chord ratio could be considered to be another
independent variable. But, it can be observed that increasing
it is similar to increasing the Mach number. This is under-
standable because they both serve the purpose of strength-
ening the leading-edge shock. Therefore, only one needs to
be an independent variable.

Several trends can be observed in the results presented in
Tables 1-3. First, Newtonian theory is not a good approxi-
mation for both the coefficients of lift and drag (50-80%
errors). This is understandable because oblique shock theory
shows that Newtonian theory is not as accurate for weaker
oblique portions of leading-edge shocks than as for the stronger
normal shock portions. From the previous discussion of thick-
ness-to-chord ratio it can be inferred that for even more slen-
der bodies the effect is similar to decreasing the Mach number
and, therefore, the Newtonian approximation would be even
worse. Unlike C, and C,, the results of the Newtonian ap-
proximation for predicting the lift-to-drag ratio are quite a
surprise; they give more accurate approximations in all cases

and even acceptable engineering approximations (<~10%
error) in cases of higher angles of attack (>1.8 deg). The
reason for inaccuracy in the coefficients of lift and drag, but
accuracy in their ratio (L/D), may be that errors in the pres-
sure distribution are negated when taking their ratio. Another
trend of interest is that linear theory produces accurate ap-
proximations for all three parameters, for almost all cases
below Mach number 10. Once again, using this trend and our
discussion about thickness-to-chord ratios earlier, we would
expect linear theory to be even more accurate for more slen-
der bodies. Linear theory may give good approximations above
Mach 5 because perturbation velocities are small due to the
slenderness of the body.

Concluding Remarks

Newtonian theory generally is not a good approximation
of slender hypersonic bodies. There is one exception: New-
tonian approximations of the lift-to-drag ratio give reasonable
engineering results. For rough engineering calculations, it is
more appropriate to use a lift-to-drag ratio as a characterizing
parameter than the coefficients of lift or drag. Furthermore,
this research has shown that a more practical upper limit of
linear theory approximations is Mach 10 for slender (t/c <
5%) bodies.
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Aerodynamic Characteristics of Vortex
Flaps on a Double-Delta Planform

Lance W. Traub*
University of the Witwatersrand,
Johannesburg, South Africa

Introduction

UMEROQUS investigations have shown the leading-edge

vortex flap' ~¢ (LEVF) concept to be effective in reduc-
ing drag. The LEVF works by concentrating the suction of
the leading-edge vortex on the flap, which may with suitable
orientation, result in a thrust force. Thus, cruise and maneu-
ver performance may be improved. For full thrust recovery,
flow reattachment should ideally occur at the flaps hinge line.
Recent studies of vortex flaps include improvement in area
efficiency and planform,* hinge-line sweep, and flap deflec-
tion angle,® etc. Various flap types have also been investi-
gated, e.g., upper and lower surface, folding or hinged, cavity
vortex flaps, as well as apex fences,® etc. Tabbed vortex flaps
have also been examined as a means to augment vortex in-
duced thrust on the flap.® The interaction of LEVFs and trail-
ing-edge flaps has also been studied.?

Double-delta or slender cranked wings received consider-
able attention in the mid-1970s with the development of the
“supercruiser’” fighter. This aircraft was to have efficient
supersonic performance coupled with competitive subsonic
maneuverability. The purpose of the double delta was to pro-
vide a highly swept inboard panel to meet the supersonic
cruise requirement, while the outer lesser swept panel in-
creased the wingspan and improved the subsonic aerodynamic
efficiency, as well as handling.” Vortex flaps have been tested
on some of the proposed supercruiser double-delta configu-
rations.® The present investigation is concerned with LEVF
effects on a double-delta (or simplified strake-wing) planform.

The model configuration and dimensions are shown in Fig.
1. A LEVF was formed by rotating a 1.1-mm-thick aluminum
plate through an angle 8y, (a downward flap deflection being
defined as positive). The vortex flaps were attached to a flat
aluminum plate 4.5 mm thick, on which the edges were bev-
eled (Fig. 1). The model had a planform area of 0.13 m?
(including the flap area), and an aspect ratio of 1.37 with the
vortex flaps planar. Only the constant chord vortex flaps as
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Fig. 2 Effect of vortex flap deflection angle on lift coefficient.

shown in Fig. 1 were tested. The vortex flaps on the strake
and wing had an equal planform area of 0.0074 m?. To facil-
itate matching the flap areas, the rear delta wing was cropped
slightly. The tests were run in the University of the Witwa-
tersrand’s low-speed continuous wind tunnel. A freestream
velocity of approximately 47 m/s was used. The corresponding
Reynolds number based on the wing’s root chord was 1.38
x 10° The wind-tunnel balance repeatability for lift, drag,
and pitching moment was estimated to be AC, = +0.0015,
AC, = =0.0008, AC,, = =0.0022.

For each respective configuration, the forces and moments
were nondimensionalized by the strake-wing area plus the
projected vortex flap area. Moments were taken about a point
located at 58% of the total root chord (535 mm). All the
coefficients were corrected for blockage and interference ef-
fects using the procedure detailed in Ref. 9.

In the investigation the vortex flaps both on the strake and
on the wing were deflected to 0, 10, 20, and 30 deg. Figure
2 shows that there is generally a reduction in lift with increas-
ing flap angle as would be expected.? This is due mainly to a
partial suppression of leading-edge vortex formation as a re-
sult of flap deflection,!” and to a lesser extent the result of
vortex being traded for thrust.* Increasing flap angle also
results in a moderate reduction in the attached flow lift com-
ponent.'’ Suppression of vortical formation, and the concom-
itant reduction in vortex strength and, hence, suction, man-
ifests itself in a reduction of the nonlinearity of the lift curve
with increasing flap deflection (see Fig. 2). Within the angle-



